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Figure 3. The Structure of 2-Azasqualene
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described as “explosions” of the mitotic apparatus (re-New Probes for Microtubule
viewed in [1]). Ed Taylor and coworkers used an affinity-Dynamics based approach to identify the protein target of colchi-
cine, and their research led to the discovery of tubulin
[2, 3]. This landmark work, carried out in the 1960s,
involved the use of a small molecule to unravel a key

A phenotype-based screen identifies a purine analog, biological mechanism. In appreciation of the similarity
named diminutol, that perturbs the microtubule cy- between such a strategy and conventional genetics, in
toskeleton in cells. An affinity-based approach identi- which one modulates protein function by introducing
fies a protein target of this small molecule and leads mutations in genes rather than by using cell-permeable
to the characterization of a new pathway that may small molecules, the term “chemical genetics” has been
regulate cytoskeleton dynamics. coined [4, 5]. Recently, several examples of the success-

ful application of chemical genetics in the examination
The treatment of cells with the small molecule colchi- of a range of biological processes have been reported
cine, a natural product, results in dramatic phenotypes (for example, see [6]). Using phenotype-based screens

and a battery of powerful in vitro and cell-based assays,in dividing cells. In early studies these phenotypes were
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ization has allowed identification of the molecular com-
ponents of the “checkpoint” pathway. The analysis of
these signaling proteins is providing insight into mecha-
nisms underlying human disorders, ranging from Down
syndrome to cancer (reviewed in [10]).

Since the discovery of tubulin, the molecular basis of
its complex polymerization dynamics has been exam-
ined in vitro and in vivo (reviewed in [11]). The �
-tubulin
subunit addition or loss from the ends of a microtubule
results in its growth or shrinkage. Studies reconstituting
polymerization with pure tubulin have led to detailed
analyses of the kinetic parameters and nucleotide de-
pendence of polymerization (Figure 1A). Electron mi-
croscopy has revealed structural differences between
polymers that are growing and those that are shrinking
[12]. Higher-resolution structural studies have provided
atomic details of tubulin organization in polymeric forms
and, when combined with computational approaches,
have yielded insight into how tubulin interacts with small
molecules such as taxol [13]. In the last decade or so,
several proteins that can bind tubulin and influence its
dynamics inside cells in at least three different ways
have been identified (reviewed in [14]) (Figure 1B). Like
the small molecules taxol and colcemid, some proteins
are known to stabilize and destabilize microtubules.
There are also proteins known to influence polymeriza-
tion equilibrium by sequestering tubulin subunits in con-
formations that cannot assemble into a polymer. As an
indication of our understanding of tubulin polymeriza-
tion dynamics, key physiological features have been
reconstituted in vitro with three pure components: tu-
bulin, a microtubule-stabilizing protein, and a microtu-

Figure 1. Regulation of Tubulin Polymerization bule-destabilizing protein [15]. However, such experi-
Polymerization depends on mechanisms intrinsic to tubulin (A) and ments represent only the first steps toward the
on other cellular proteins that can bind tubulin subunits or microtu- recapitulation of complex microtubule-dependent pro-
bules (B). The schematic shows a microtubule consisting of protofi- cesses, such as movements of chromosomes during
laments (typically 13). �
-tubulin dimers are the building blocks that

cell division. Additionally, the list of proteins and theare added to or removed from the ends to grow or shrink the filament.
different mechanisms by which tubulin polymerizationGTP hydrolysis plays a critical role in regulating polymerization.

There are proteins known to stabilize the polymer lattice, catalyze and organization can be regulated in cells remains far
its depolymerization, or sequester subunits to influence polymer from complete.
dynamics. Wignall et al. screened a library of purine derivatives

by using a cell-free system to select small molecules
that modulate tubulin dynamics without binding tubulin

combined with systematic chemical synthesis and state- directly. This cell-free system employs cytoplasm de-
of-the-art mass spectroscopy, Wignall et al. now report rived from unfertilized frog eggs, was first described by
the discovery of a new pathway that may regulate tubulin Masui and coworkers [16], and has since been used to
polymerization in cells [7]. identify several proteins and characterize mechanisms

Several small molecules that can destabilize or stabi- underlying a range of cellular processes, including the
lize polymers of tubulin by directly binding to it are now regulation of tubulin dynamics. The use of this system,
known (reviewed in [8]). Not surprisingly, these small- as described in this study, represents a promising solu-
molecule modulators have played a central role in defin- tion to a key challenge faced in phenotype-based chemi-
ing the functions of tubulin and the importance of regu- cal genetic screens. Recent advances in combinatorial
lating its polymerization dynamics in cellular contexts. or parallel synthesis allow for the generation of large
For example, modest perturbations of tubulin polymer- collections of small molecules that can be efficiently
ization by small molecules during cell division activate screened via automation in hardware and analysis to
a “checkpoint” mechanism, a signaling pathway that select compounds that yield a desired biological pheno-
arrests a cell in mitosis and prevents the cell from im- type. However, identification of protein targets of these
properly segregating its DNA into daughter cells (re- small molecules can often be difficult. An important as-
viewed in [9]). This sensitivity of cell cycle progression pect of the frog egg extract system is that it can be
to tubulin polymer dynamics is the likely basis for the prepared in quantities sufficient for biochemistry experi-
efficacy of tubulin-targeting chemotherapeutic agents ments and directly used in phenotypic assays as well
used in treating diseases such as cancer. Screening as affinity-based target-identification experiments.
for genetic mutations that override the cell cycle arrest Guided by systematic SAR (structure-activity relation-

ship) analysis, Wignall et al. identified active and inactiveinduced by small-molecule inhibitors of tubulin polymer-
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derivatives of the lead compound they named diminutol, Ulf Peters and Tarun M. Kapoor
Rockefeller Universitya purine analog that destabilized tubulin in the cell-free
1230 York Avenueextracts and in cells. Active and inactive analogs were
New York, NY 10021covalently attached to agarose beads for affinity-based

target identification experiments. Although affinity-matrix
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arrest or apoptosis [3]. Among many possible targets,Targeting FOXO Kills Two Birds
there is little doubt that phospho-Akt has a critical rolewith One Stone in many human cancers, often as a consequence of
PTEN inactivation [4]. PTEN, both a lipid phosphatase
and a protein phosphatase, is frequently mutated in a
wide range of human malignancies, including glioma,

PTEN deficiency activates Akt signaling and results prostate and breast tumors, melanoma, squamous cell
in a variety of human malignancies. Encouragingly, carcinoma, and thyroid tumors [5, 6]. Animal models
recent studies demonstrate that small molecules can have shown that PTEN knockout is embryonic lethal and
regulate FOXO1a, an Akt target, to suppress tumor that heterozygous PTEN-depleted mice are prone to the
growth, and FOXO1a is therefore a promising antican- development of various cancers [7, 8]. Restoring PTEN
cer drug target. function in mutant PTEN-containing tumor cells by

expressing exogenous PTEN can largely reverse the
Molecular targeting of tumor-specific signal transduc- malignant phenotype. The main mechanism of cancer
tion pathways is a promising strategy for discovering development due to PTEN inactivation is constitutive
and developing novel potent anticancer drugs. Small- activation of Akt function. Akt is a kinase that has numer-
molecule libraries have been intensively screened for ous targets, many of which are important for regulating
compounds that block ligand-receptor interaction [1], the balance between cell survival and apoptosis [9, 10];
those that block signaling transduction pathways [2], such targets include MDM2, Bad, Bcl-2, CDK inhibitors,

caspase 9, and forkhead transcription factors such asand those that block master regulators of cell cycle


